Predict method for DNN objects.
# S3 method for class 'DNN'
predict(object, newdata, newoutcome = NULL, verbose = FALSE, ...)
A model fitting object from SEMdnn()
function.
A matrix containing new data with rows corresponding to subjects, and columns to variables.
A new character vector (as.factor) of labels for a categorical output (target) (default = NULL).
Print predicted out-of-sample MSE values (default = FALSE).
Currently ignored.
A list of three objects:
"PE", vector of the amse = average MSE over all (sink and mediators) graph nodes; r2 = 1 - amse; and srmr= Standardized Root Means Square Residual between the out-of-bag correlation matrix and the model correlation matrix.
"mse", vector of the Mean Squared Error (MSE) for each out-of-bag prediction of the sink and mediators graph nodes.
"Yhat", the matrix of continuous predicted values of graph nodes (excluding source nodes) based on out-of-bag samples.
# \donttest{
if (torch::torch_is_installed()){
# Load Amyotrophic Lateral Sclerosis (ALS)
ig<- alsData$graph
data<- alsData$exprs
data<- transformData(data)$data
group<- alsData$group
#...with train-test (0.5-0.5) samples
set.seed(123)
train<- sample(1:nrow(data), 0.5*nrow(data))
#ncores<- parallel::detectCores(logical = FALSE)
start<- Sys.time()
dnn0 <- SEMdnn(ig, data[train, ],
# hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10,10,10), link = "selu", bias = TRUE,
validation = 0, epochs = 32, ncores = 2)
end<- Sys.time()
print(end-start)
pred.dnn <- predict(dnn0, data[-train, ], verbose=TRUE)
# SEMrun vs. SEMdnn MSE comparison
sem0 <- SEMrun(ig, data[train, ], algo="ricf", n_rep=0)
pred.sem <- predict(sem0, data[-train,], verbose=TRUE)
#...with a categorical (as.factor) outcome
outcome <- factor(ifelse(group == 0, "control", "case")); table(outcome)
start<- Sys.time()
dnn1 <- SEMdnn(ig, data[train, ], outcome[train],
#hidden = 5*K, link = "selu", bias = TRUE,
hidden = c(10,10,10), link = "selu", bias = TRUE,
validation = 0, epochs = 32, ncores = 2)
end<- Sys.time()
print(end-start)
pred <- predict(dnn1, data[-train, ], outcome[-train], verbose=TRUE)
yhat <- pred$Yhat[ ,levels(outcome)]; head(yhat)
yobs <- outcome[-train]; head(yobs)
classificationReport(yobs, yhat, verbose=TRUE)$stats
}
#> Conducting the nonparanormal transformation via shrunkun ECDF...done.
#> Running SEM model via DNN...
#> done.
#>
#> DNN solver ended normally after 736 iterations
#>
#> logL:-41.321965 srmr:0.203492
#> Time difference of 4.699288 secs
#> amse r2 srmr
#> 0.6428678 0.3571322 0.2519231
#> RICF solver ended normally after 2 iterations
#>
#> deviance/df: 6.262846 srmr: 0.3040025
#>
#> amse r2 srmr
#> 0.7653813 0.2346187 0.2948502
#> Running SEM model via DNN...
#> done.
#>
#> DNN solver ended normally after 800 iterations
#>
#> logL:-38.883117 srmr:0.167098
#> Time difference of 4.834204 secs
#> amse r2 srmr
#> 0.5953616 0.4046384 0.2199239
#> pred
#> yobs case control
#> case 65 9
#> control 1 5
#>
#> precision recall f1 accuracy mcc support
#> case 0.9848485 0.8783784 0.9285714 0.875 0.4933551 74
#> control 0.3571429 0.8333333 0.5000000 0.875 0.4933551 6
#> macro avg 0.6709957 0.8558559 0.7142857 0.875 0.4933551 80
#> weighted avg 0.9377706 0.8750000 0.8964286 0.875 0.4933551 80
#> support_prop
#> case 0.925
#> control 0.075
#> macro avg 1.000
#> weighted avg 1.000
# }